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Abstract—Variable channel conditions present a challenge to
traditional communication systems that have to balance reliable
delivery of information and data throughput. Reliable commu-
nication schemes that can operate in with a low signal-to-noise
ratio typically have a low data throughput. Channel conditions
may sometimes can support higher throughput communication
schemes. Typically, traditional communication systems cannot
leverage these momentary conditions since they are often con-
figured for the worst-case scenarios. This paper proposes a
configurable radio platform controlled by a cognitive engine
algorithm that optimizes the throughput given different channel
scenarios. This system can ensure reliable data delivery in
noisy channel conditions, while exploiting channel conditions
conducive to higher throughput. The target application for our
work is space communications. Specifically the NASA’s Space
Communications and Navigation (SCaN) Testbed. Our goal is to
adapt our cognitive link adaptation algorithms to be tested on
the SCaN testbed. To this end, we have begun the implementation
and testing of our algorithms on a GNU radio based platform
that we developed specifically for the needs of the project. It
was found that the cognitive radio platform could maximize
data throughput in noiseless systems, while choosing a reliable
communication scheme for noisy situations. The work presented
in this paper, details the initial steps in the implementation of a
larger system that will use cognitive engines and channel profiling
to intelligently choose between transmission configurations to
maximize data throughput.

I. INTRODUCTION

Communications with the International Space Station (ISS)

is limited to noise resistant modulation schemes, such as

binary phase-shift keying (BPSK) that the channel conditions

may support. The unpredictability of the channel between

ground stations and the ISS requires using a modulation

scheme capable of operating with a low signal-to-noise ratio

(SNR). Lower modulation schemes, however, limit the data

throughput. A limited visibility duration between the ISS

and ground stations, because of the flight path of the ISS,

exacerbates the low throughput issue.

Although, channel conditions may require using lower mod-

ulation schemes sometimes, momentary channel conditions

may allow using higher modulation schemes, with higher

SNR requirements, such as 8PSK or 16QAM. The greater

throughput of these schemes allow a larger volume of data

to be transmitted during brief transmission windows. The

ability to switch the modulation scheme during real-time

communications would address low channel throughput, as

when the channel can support a higher modulation scheme,

more data would be pushed through.

To decide on the modulation scheme and forward error

correction (FEC), a cognitive engine (CE), an algorithm that

makes decisions based on several input parameters [1] may

be used. Typical CE implementations initialy explore the

available configurations available to it, i.e., combinations of

modulation schemes, coding, transmission power, etc., and

profiles the performance of these configurations [1]. The

exploration phase concludes once the CE has blindly learned,

as there is no intelligence associated with its decision other

than its past experience, the best configuration for the given

input parameters. The convergence time, i.e., the time taken

for the CE to become confident of its decision, is one metric

used to measure the performance of the CE [2], [3]. Varied

input parameters cause a CE to leverage its past experience to

form a new decision, though the CE may choose to continue

exploiting its past experience because of “greedy” behavior.

A layer of intelligence can be added by adding a metacog-

nitive engine (Meta-CE). The Meta-CE may choose a CE that

best suits the current channel conditions (or lack of knowledge

thereof), e.g., for a channel whose conditions are unknown,

the Meta-CE may choose a CE that explores all available

configurations before exploiting its knowledge, allowing the

channel to be profiled.

The ability of a Meta-CE communications system to profile

the channel, and adapt to its conditions presents a solution

to the low throughput, though noise-resistant, communication

scheme currently implemented to communicate with the ISS

[4]. NASA is seeking a communication system that leverages

the Space Communication and Navigation (SCaN) Testbed,

developed at the Glenn Research Center in Cleveland [5]. The

SCaN Testbed is an experimental software define radio (SDR)

platform designed to develop communication, navigation, and

networking schemes that utilize SDR techniques to alter the

radio characteristics during operation and optimize communi-

cation metrics, e.g., throughput.

Research on SDR and cognitive techniques are critical to the
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Fig. 1. The SCaN Testbed, affixed onto the ISS.

advancement of communication capabilities in limiting chan-

nels. The development of adaptable systems presents solutions

not only to the ISS communication issue, but also to deep

space communications, and many situations where channels

can vary between supporting lower (high traffic times) and

higher (low traffic times) modulation schemes. While initially

this research may be used in specialized applications (such as

the SCaN Testbed), the rapid growth of wireless communica-

tions in today’s society may require solutions leveraging these

intelligent communication systems.

This paper presents the results of an SDR platform whose

radio characteristics are controlled by different CEs. The pro-

totype system was developed to showcase the capabilities of

different cognitive engines, and the effects on data throughput

in ideal and noisy channel conditions. Our goal is to continue

developing our methods and to port and test our methods on

the SCaN testbed.

II. BACKGROUND

A. The SCaN Testbed

The SCaN Testbed is an experimental communications

system that uses software-defined radio (SDR) technology

and provides the capability for S-Band, Ka-Band, and L-

Band communication with space and ground assets. Launched

in 2012, the SDR testbed has logged over 2500 hours of

investigation into SDR waveform software development, re-

configuration, and on-orbit operations. The focus of the SCaN

Testbed has matured from investigation of SDR technology

and the Space Telecommunications Radio System (STRS)

radfio architecture to the application of adaptive and cogni-

tive technologies for NASA space science and exploration

missions. The SCaN Testbed flight system consists of three

software defined radios provided by government and industry

partners. Each of the software defined radios has an STRS

Operating Environment (OE), which includes an operating

system and infrastructure services to applications and wave-

forms in accordance with the STRS Standard (Ref: NASA-

STD-4009). The OE middleware abstracts the SDR hardware

from the waveform application software. In addition to the

OE, each SDR runs waveform applications, also compliant

to STRS, which implement the unique capabilities of the

radio to receive and transmit radio frequency (RF) signals.

The flight system communicates with NASAs space network

infrastructure of orbiting relay satellites or can communicate

directly to ground station compatible with its frequency plan.

The cognitive application experiments proposed and described

in this report will exercise communication links to the relay

satellites and to the ground station. Adaptive and cognitive

responses to atmospheric effects between space system and

ground station can be studied using the space to ground

connection at S-band, while relay satellite connections (at S-

band and Ka-band frequency), which last longer and can be

tailored to emulate direct to ground passes, are better suited to

characterize cognitive engine behavior and performance. As a

completely reconfigurable testbed, the SCaN Testbed provides

experimenters an opportunity to develop, test, and demonstrate

advanced communications, networking, and navigation tech-

nologies and to advance the understanding of operating SDRs

in space. The prosed cognitive experiments align well with

NASAs interests in applying intelligent system behavior to

operational systems to reduce cost and human intervention,

and better manage the system and communications complexity

introduced with flexible and reconfigurable software defined

radios

B. Cognitive Radio Engines

The scope of Cognitive Radio (CR) research is to develop

radios with adaptive capabilities that are facilitated using arti-

ficial intelligence (AI) techniques and other computer science

concepts. According to the CR pioneer, Joe Mitola, an ideal

CR is capable of not only optimally utilizing its own wireless

capabilities, but also self-determining its goals by observing its

human operator’s behavior [6]. Current CR devices are capable

of efficient spectrum utilization and optimized performance in

challenging conditions. To make CR possible, communication

engineers have, in the last few years, borrowed ideas from

machine learning and AI [7]. A cognitive engine (CE) is an

intelligent agent who enables the radio to have the desired

learning and adaptation abilities. This intelligent agent [1]

senses its environment (the wireless channel), acts by using a

communication method based on its experience, and observes

its own performance to learn its capabilities, adding to its

experience base. The work of Rieser, Rondeau, and Le [8]–

[10] propose a CE that deals with the user, policy, and radio

domains. Their designs are similar and based on the Genetic

Algorithm (GA), cased-based reasoning (CBR), and multi-

objective optimization principles. He et al. [11] designed

a CBR-based CE for IEEE 802.22 wireless regional area

network (WRAN) applications and also investigated the radio

and policy domains. Other works have focused only on the

radio domain. For example, Newman et al. [12] and Z. Zhao,

et al. [13] applied a GA and particle swarm optimization,

respectively, to multi-channel radio links. On the other hand,

N. Zhao et al. [14] proposed a CE design based on ant
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colony optimization. Zhang and Weng designed a CE with

dynamic resource allocation [15], and Y. Zhao et al. [16]

looked into utility function selection for streaming video with a

CE testbed. Finally, for learning and optimization of a wireless

link, Baldo and Zorzi [17] applied an artificial neural network

(ANN) and Clancy et al. [18] used predicate logic.

Different types of aforementioned CEs have their own ad-

vantages and disadvantages. Providing predictable and higher

confident performance level is the most important aspect of

designing various CE algorithms at all times. Therefore, the

metacognitive radio engine [3] is being proposed to provide

the mentioned level of prediction for distinct types of CEs.

The first effort was Gadhiok et al. [19], who proposed a

very primitive architecture of metacognition. In their work

they state, “when using a case-based reasoning (CBR) learning

framework, metacognition may classify the CBR as an infant,

child, or adult, based on the level of learning achieved.

Moreover, more advanced and generic metacognitive engine is

proposed by the authors [3], which is able to classify various

CE algorithms based on the operating conditions (objective,

channel condition, radio capabilities, etc.). The proposed meta-

CE employs a generic performance characterization method to

evaluate the performance of individual CE algorithms. Also,

the meta-CE can identify distinct operating scenario based on

the performance level of CEs.

III. SYSTEM SCOPE

The proposed system consists of a reconfigurable digital

communication layer capable of transmitting using a variety

of modulation and coding schemes. The permutations are

controlled by different CEs, where each CE is tuned to explore

a particular channel scenario. The specific CE algorithm in

use will be determined by a Meta-CE that bases it decision

on the current channel scenarios, spectrum availability, and

geographic location of the communicating peers.

The use of a Meta-CE is what introduces a measure of

“intelligence” into the system. Each CE reacts to the cur-

rent channel conditions, adapting the system configuration to

maximize throughput; this behavior is, by definition, blind.

A Meta-CE is proactive, as it chooses a CE that it believes

will adapt rapidly to the current conditions. For instance, if

transmission was occurring in a region that the Meta-CE had

no prior knowledge of, it would be more likely to choose a CE

algorithm that rapidly changed its transmission configuration,

allowing more exploration of the channel.

The ability of the system to leverage its past experiences

(through the CE), and current knowledge of the channel

(through the Meta-CE) allows for the system to make balanced

decisions. In terms of use, such a system could be deployed in

a variety of situations without prior training and knowledge,

and after a learning curve, would optimally transmit without

human interaction. In other words, the proposed system could

be deployed for terrestrial communications in a spectrally

noisy region, such as city, and an identical system could be

deployed for space communications. In both cases, the system

would optimally transmit in the respective regions without

considerations from an external operator.

Cognitive Engine

· SNR

· Bandwidth

· Modulation 

type

· Channel coding

· Transmit power

Objective function

· Maximizing throughput

· Power efficiency

Number of received acks

Channel scenario

List of configurations
Next 

Configuration

Fig. 2. Cognitive Radio Framework

IV. COGNITIVE RADIO ENGINE IMPLEMENTATION

This section describes the our implementation of CE meth-

ods. First, Figure 2, illustrates our implementation of a CR

framework, where the Cognitive Engine block denotes a Meta-

CE that selects different CE algorithms. In this architecture,

the Meta-CE receives channel scenario metrics and list of all

possible configurations based on the radios capabilities, and is

aware about the capabilities of different CEs to face various

conditions. Additionally, the Meta-CE receives an objective

function from operator to be able to evaluate past decisions

the defined objective. As an output, the CE selected by the

Meta-CE will determine next set of configurations to transmit.

In the rest of this section, we present three different CE

algorithms. The algorithms are ǫ-Greedy [20], the Boltzmann

exploration [20], and the Gittins Index strategy [21]. All the

techniques have two things in common: firstly, they are based

on stochastic principles, and secondly, they all have a factor

that affects the exploration rate.

A. The ǫ-Greedy Strategy

The ǫ-greedy strategy [20] is a simple strategy that uses (i.e.,

exploits) the best method (with highest reward) 1−ǫ(ǫ ∈ [0, 1])
of the time (greedy). However, with probability ǫ it explores by

using a random method, k, uniformly selected. As (n → ∞)
by the law of large numbers the mean of rewards is going to

converge to the true mean. The ǫ-greedy methods guarantee

that all the options are explored as the horizon tends to infinity.

The ǫ parameter controls how fast exploration is performed. A

higher ǫ will cause a faster exploration and arrive more quickly

at an optimal or near-optimal option. However, the high

exploration rate may cause reduced overall returns because of

the higher exploration cost. The strategy described here is the

classic version of the strategy. An issue with this version is that

exploration never stops. For this reason, there is a variation that

slows down as the number of trials increases. This is especially

important when the search space has many significantly under-

performing methods. The exploration parameter is updated at

every trial n by:

ǫ =
ǫ0

1 + ndǫ
(1)

where ǫ0 is the initial value of ǫ, and dǫ the decrease rate.

Another variation takes into account the prior knowledge about

each method’s potential. We know the maximum potential
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Fig. 3. ǫ-Greedy Algorithm

return of each option (capacity) and we also know the upper

bound of the capacity that can be achieved under the current

channel. Therefore, we restrict the exploration to machines

that potentially can outperform the current kgreedy .

Figure 3 presents the flow graph of ǫ-greedy implementation

as a CE algorithm. In first step, we create a random variable

uniformly between 0 and 1. If the generated random value is

greater than ǫ, CE will go to exploitation phase, otherwise,

CE will run exploration phase and will choose a configuration

randomly. In exploitation phase, if we CE faces more than

one configuration as the best one, it will choose one of them

randomly.

B. Boltzmann Exploration

Boltzmann exploration [20] weighs its actions based on their

estimated value (i.e., methods with a higher value are more

likely to be selected.) Each method is selected with probability

pk given by:

Pk =
eµk

(n)/T

∑
i e

µ
i
(n)/T

(2)

where T is a positive parameter called the temperature. When

the temperature is high (T >1000), the methods are selected

probabilistically based on their values pk ≈ µk(n)/
K∑

i=1

µi(n).

That is, methods with a higher estimated value µk(n) are more

likely to be selected. However, as T → 0, pkmax
→ 1, where

kmax = argmaxk µk(n). Therefore, as the temperature gets

lower in value, the Boltzmann exploration disproportionately

selects methods with higher value (i.e., it becomes greedier)

and when T ≈ 0 it only selects the method with the highest

estimated value. The temperature T is updated at each trial n

using

T =
T0

1 + ndT
(3)

where T0 is the initial value of temperature and dT the

decrease rate.

Figure 4 provides a flow graph of Boltzmann strategy

implementation. First, CE updates temperature value (T) based

on 3. Then, CE will updates all of the probabilities based on

the modified value of T and new observations. Finally, CE

chooses a configuration randomly by using an the updated

probabilities of each configuration.

C. The Gittins Index Strategy

Gittins proved that exploration vs. exploitation can be

optimally balanced using a dynamic allocation index-based

strategy [39]. This strategy maximizes the total sum of rewards

Updating T and 
probabilities of all 

configurations

Choosing a 
configuration 

randomly based on 
updated Boltzmann 

distribution

Next 
Configuration

Experience 
database

Fig. 4. Boltzmann Exploration Algorithm
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configuration

Choose random 
among n best 
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Yes

No

Next 
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Update indices 
based on the 
new received 

rewards

Experience 
database

Fig. 5. Gittins Index Algorithm

collected over a long-term horizon. The strategy is simply to

use the method with the highest Gittins index, which is based

on the reward statistics of each method and must be estimated

only when those statistics change (i.e., only when each method

is used). We discuss the use of the Gittins indices in more

detail in two of our prior publications [4], [5].

The Gittins index is dependent upon the underlying distri-

bution of Formula. In this work, we consider the Gittins index

for the normal reward process (NRP) and the Bernoulli reward

process (BRP). In the application examined in this work, the

underlying process is Bernoulli - a packet is either successful

or unsuccessful. For a NRP, the Gittins index is equal to

ν(µ, σ2, n′, γ) ≡ µ+ σν(0, 1, n′, γ) (4)

where µ and σ2 are the estimates of the mean and the variance

of return, respectively, using n′ trials; γ ∈ (0, 1) is a discount

factor; and ν(0, 1, n′, γ) is the Gittins index for a zero mean,

unit variance distributed process (tabulated in Gittins’ book

[21]). For a BRP, the Gittins index is equal to

ν(α, β, γ,Rk) ≡ Rkν(α, β, γ, 1) (5)

where ν(α, β, γ, 1) is the Gittins index for a Bernoulli process

(again tabulated in Gittins’ book [21]), with α successes and

β failures, and a reward of 1, if successful. Rk is the reward

received when method k is successful. In the BRP case, the

belief state is represented by {α, β}. Other works offer more

information on the Gittins index [22], [1], [21].

Figure 5 illustrates how the gittins index strategy is imple-

mented. In this process, first, CE updates experience database

by index of recent used configuration based on the received

rewards. Next, CE chooses a configuration with the highest

index. If CE faces more than one configuration with maximum

index, It will choose one of the randomly.
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V. PLATFORM DEVELOPMENT

This section describes the SDR platform developed to test

the CE implementations. The plaform and CEs were developed

concurrently; a fixed interface was developed to describe the

communication between the two modules. The experimental

specifics are also discussed in this section.

VI. RADIO PLATFORM

To test the CE implementations, a full-duplex radio platform

was written using GNU Radio (GR), an open source software

development toolkit. The framework provided a variety of

signal processing blocks, implemented in C++; a chain of

blocks (flowgraph) formed a software platform that replaced

the functionality of traditional hardware, e.g. an FM demodu-

lator.

During the development of GR, hierarchical blocks were

created to accomplish common tasks, such as packet modu-

lation. These blocks were written in Python and made use of

the C++ backend through SWIG. The choice of Python allows

radio systems to prototyped and modified rapidly, as well as

offering the functionality and flexibility of Python.

Additionally, GR was written to leverage external RF hard-

ware, such as the Ettus Research Universal Software Radio

Peripheral (USRP) series, to form software defined radio sys-

tems. The USRPs provided a generic radio frontend while GR

handled the signal processing specific to the radio application.

The radio platform was constructed by compiling GR

3.7.5.1 from source on two PCs that had Fedora 20 installed

as the operating system. A pair of USRP N200s were used as

the RF frontend. Universal Hardware Driver 3.8 was compiled

from source on the PCs allowing communication with the

USRPs. The radio platform itself was written in Python.

Phase-shift keying was implemented as the platforms mod-

ulation scheme, supporting 2, 4, and 8 constellation points.

Differential and Gray coding were available, allowing for a to-

tal of twelve transmission configurations. The system was de-

signed to allow the modulation scheme to be switched during

operation. The platform also implemented Reed Solomon for-

ward error correction at ratios of 1/8,
1/4,

3/8,
1/2,

5/8,
3/4,

7/8
and 1. However, due to the implementation specifics, the

coding scheme was not used during system operation. Signals

were fixed to a 400 kHz bandwidth.

To simulate channel scenarios, the radio platform was

equipped with an AGWN adder on the receiver side. This

allowed noise to be added to the incoming signal, reducing

the SNR. This feature was used to force the CE to adapt to

noisy conditions.

VII. SYSTEM

The cognitive engine and radio platform were implemented

as two separate applications. A shared SQL database was used

to communicate between the two processes during runtime.

The database contained the transmission statistics, provided by

the radio platform at periodic intervals. The cognitive engine

used the statistics to base its decisions. As implemented, the ra-

dio platform provided the data throughput as the measurement

statistic, consistent with the CE objective. During operation,

Fig. 6. Throughput vs Frame Number plot for Epsilon-Greedy CE showing
convergence to 8PSK after exploration in noiseless channel.

the database was updated by the CE with the next transmission

configuration to be used by the radio platform.

The radio platform was written to continuously transmit

1000 packet frames, where each packet had a 376 bit payload.

At the end of each frame, if a new transmission configuration

was chosen by the CE, the transmitter notified the receiver of

the new scheme and both systems automatically reconfigured

in preparation for the next frame.

The throughput of the system was defined as the total

number of packets acknowledged by the receiver over the time

taken for the last acknowledgment to be seen by the transmit-

ter. Only packets that passed a CRC were acknowledged by

the receiver. A three second time to live was given to the last

packet defining the time window for each frame.

VIII. RESULTS

Each CE starts with no knowledge of the channel, i.e.

the experience table in the database is reset each time the

system is run. Figure 6 demonstrates the Epsilon-Greedy CE

acclimatizing to a noiseless channel. It is seen that after a

brief exploration phase, 8PSK is chosen to maximize the data

throughput. The exploration phase lasts 10 frames (which

corresponds to 10,000 packets). The maximum throughput

achieved by the system is 350 kbps. Figure 7 shows the

constellation plot at the receiver side with an SNR of 40 dB.

The apparent spread of the constellation points in the figure are

a result of the automatic gain control and the window zoom.

In a noisy environment, the CEs adapt to more noise-

resistant modulation scheme. Figure 8 shows the reduced

throughput of the system, roughly 40 kbps, due to the high

noise floor, while 9 shows the spread of the constellation

points. This is a result of adding noise to the system to reduce

the SNR to 10 dB.

The exploitative nature of the CEs in situations where

multiple configurations demonstrate similar performance is

demonstrated in Figure 10. The figure shows the Gittins CE

exploring different two main configurations, QPSK and 8PSK

as the channel conditions do not favor either modulation

scheme. The two valleys in the figure are a result of the

Gittins engine electing to explore a BPSK modulation scheme.

Figure 11 shows the noisy channel conditions that favor neither

QPSK nor 8PSK. The low SNR increases the BER for 8PSK,

reducing its throughput similar to QPSK.

5
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Fig. 7. Constellation plot at receiver for noiseless channel for Epsilon-Greedy
8PSK convergence.

IX. FUTURE WORK

Our immediate plans is to proceed with integrating our

Meta-CE [3] work with the radio platform. Based on the ob-

served channel conditions, which define the radio environment,

the Meta-Cognition Module sets the operational parameters

(channel, BW, power, corresponding station, and applicable

link options such as modulation and coding) of the waveform.

From Figure 12, the Meta-Cognition Module profiles each

CE algorithm’s adaptation performance at different operating

scenarios, amd chooses the most suitable CE algorithm for

the current operating conditions. The Shared Memory stores

historical data of the previous adaptations, which is available

to each CE algorithm.

Next, we plan to integrate our modulation classification

work in order reduce the need for header information in our

transmitting packets and for enhancing our radio environment

map algorithms that we also plan to integrate to the platform.

Modulation classification would allow the system to profile

the incoming signal and choose the demodulation scheme that

matches the signal profile.

By integrating RF Mapping into the communications the

platform, the Meta-CE would be provided a map of spectral

usage in the geographic area of operation for the communi-

Fig. 8. BPSK convergence in a noisy channel.

Fig. 9. Constellation plot at receiver for noisy channel.
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Fig. 10. Gittins CE continuously exploring different configurations when one
configuration is not clearly better than others.

Fig. 11. Receiver side constellation plot during exploration for a noisy
channel.

Fig. 12. Metacogntive Engine Diagram

cations system. The RF Mapper will map and estimate the

signal availability of the various links taking account the

expected orbits. Using this knowledge, the CE will be to more

accurately select the appropriate methods for the current and

anticipated signal levels and reduce the adaptation convergence

time.

We also plan improvements on our current platform such

transitioning to C++ (versus Python) and use of a custom

packetizer in lieu of the stock GNU Radio packetizer that

will be more streamlined for our application and increase

flexibility.

Finally, a proposal is being put forward to NASA to show-

case the operation of the Meta-CE communications system

running on the SCaN Testbed.

X. CONCLUSIONS

The prototype communication system demonstrated that the

use of a CE with an SDR platform improves the performance

of a communication system that uses a fixed modulation

scheme with a conservative link margin to cover any an-

ticipated fluctuations. It has been demonstrated that given

ideal channel conditions (high SNR) the CEs would maximize

throughput. Conversely, with lower SNR channels would cause

the CEs to select lower modulation schemes such as BPSK.

The ability of the system to adapt to the channel conditions

to optimize a specific metric demonstrates the fundamental

characteristic desired in an intelligent communication system.

Future work concerning the system will constitute imple-

menting a Meta-CE to control which CE is utilized adding a

measure of intelligence to the learning process of the system,

allowing the system to habituate rapidly to the channel as

the convergence time latency of CEs prevents rapid adap-

tion. Incorporating modulation classification would allow the

communicating peers to be blind, i.e. no forward declaration

of which configuration currently employed by the system

would be required, resolving issues of loss of synchronization

between peers. RF Mapping would provide the Meta-CE with

some prior knowledge of the channel conditions, eliminating
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an aggressive exploration phase for CEs reducing convergence

time.
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