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Abstract—A cognitive radio engine (CE) is where the advanced
adaptation algorithms for a cognitive radio (CR) is implemented.
A CE is an intelligent agent which observes the radio environment
and chooses the best communication settings that best meet the
application’s goal. In this process, providing reliable performance
is one of the major tasks in designing CEs for wireless com-
munication systems. In our previous work, we have proposed
a metacognitive engine (meta-CE) that is able to evaluate CE
algorithms’ performance automatically. A meta-CE is generally
considered to be comprised by a set of CE algorithms and a
metacognition module that provides the meta abilities of the
CE. We have identified that the most important task in order
to enable metacognition is characterizing the performance of
each individual CE algorithm on a given operating scenario. An
operating scenario is defined as the set of the operating objective,
channel availability, and channel quality metrics. In this paper,
we develop performance evaluation metrics to quantify the
amount of knowledge of different CE algorithms independently
of the implementation approach and operating scenarios. By
using these new metrics, we will be able to provide a more
accurate estimation of the performance of each individual CE
algorithm. Also, we facilitate CE algorithm selection by the new
metrics due to their flexibility and ability to predict the Cognitive
Radio Systems’ (CRS) capabilities. Finally, we use the proposed
metrics to control the exploration rate of the CE algorithm. Our
results show that the proposed contextual CE algorithm is able to
improve our objective rewards by 10% vs. the ǫ greedy algorithm.

I. INTRODUCTION

Conventional radios typically use a fixed set of commu-

nication methods that were preprogrammed by the radio’s

manufacturer. Nowadays, work in cognitive radio (CR) aims

to change that by designing radios that are able to adapt their

communication methods based on the operating conditions.

The idea of CR comes from Mitola that described CR as a

radio, which is not only able to optimize its own capabilities,

but also can self-determine the goal by observing its operator

and environment [1]. In our work, we focus on designing

radios that optimize their capabilities.

CR is the key to pushing the limits of radio performance

and maximizes utilization of the available resources such as

power and radio frequency (RF) spectrum. To date, a plethora

of research has been done [2]–[4] on the methods needed

for developing CRs and understanding of their limits and

capabilities. Besides the academia, the CR research has begun

to influence the wireless communication standards through the

relevant national and standardization bodies in communica-

tions.

By the fast-growing use of CR applications and CEs,

providing predictable performance at all times is of paramount

importance in different CE techniques. In this work, we

focus on how to learn the experience level of individual CE

algorithms in distinct operating scenarios. The new evaluation

metrics presented in this paper aim to enable a CE and a

meta-CE to predict the performance level of different CE

algorithms. To this end, in the first step, we characterize

the performance of different CE algorithms based on the

operating channel scenarios and measure the confidence level

of each CE algorithm with lower and upper bounds of their

expected performance. Then, we predict the training rate and

the expected performance of individual CE algorithms for

ongoing operating channel scenarios based on the information

from the previous step. Finally, we can create a meta-CE

[5] [6] that can choose from a set of available algorithms

for providing the needed performance level of CR by using

the new proposed metrics. This approach allows a powerful

estimation of the performance level of CEs and helps a radio

to provide a deterministic output.

The first contribution of this paper is proposing three perfor-

mance evaluation metrics. These metrics’ aim is to quantify

the amount of knowledge for each CE algorithm. Secondly,

we show how a CE or meta-CE algorithm can be facilitated

by using the proposed metrics as an index to approximate the

expected performance level of each individual CE algorithm.

The main purpose of this paper is to provide predictable

performance based on the available CE’s experience database.

And thirdly, a meta-CE predicts the performance level of a

CE algorithm for an operating scenario by using of learning

curves and knowledge indices.

This paper is organized as follows: Section II, presents an

overview of different CE algorithms and problem description.

Section III, describes our recent advancement on defining new

performance evaluation metrics. Finally, Section IV provides

concluding remarks.

II. BACKGROUND AND PROBLEM FORMULATION

The main objective of different CE algorithms is improving

the radio performance in various operating scenarios. This im-

provement could be increasing spectral efficiency, throughput,
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power consumption or efficiency, etc. Different CE algorithms

will go across various paths to meet its objective. Therefore,

one of the most critical phases of the CE’s operation that

makes a considerable difference between CE techniques is

the training phase. This is the time that the CE is called to

maximize an objective, but it doesn’t have enough knowledge

of the radio’s abilities, and it has to experiment by sending

training packets. It was found that near maximal performance

can be reached relatively fast if the majority of the operating

configuration sets meet minimum performance requirements.

On the other hand, a significant amount of trials is required if

the number of operating configuration sets that meet minimum

performance is extremely small. In this journey, CEs will

learn from their mistakes and explorations that how distinct

configurations behave, in particular, channel scenarios. Since

CE algorithms will pass distinct roads to fulfill their objectives,

we need to define some metrics to evaluate their progress

during training phase [7].

A. Exploration Vs. Exploitation

A primary function of the CE is to learn the capabilities

of the radio. This is generally done by trial and error. When

the radio performs this function, it is said to be exploring.

On the other hand, when the radio is choosing methods

with the best-known performance, it is said to be exploiting.

The exploration operation consumes valuable resources such

as time and energy and might significantly impact the link

performance (i.e., dropped packets). One option to avoid these

negative effects during the radio’s operation is to put the CE

through prolonged training sessions covering most expected

operating conditions. However, even if the CE is assumed

to go through prolonged learning (exploration) sessions, it

is practically impossible to expose it to all possible channel

conditions a priori. Consequently, it is reasonable to expect

that the CE sooner or later will face unknown conditions. In

such a case, if the radio is operating in a critical mission it

may not have the luxury of time to learn what is best before

operating; it has to establish a connection and learn at the

same time. Optimally balancing exploration vs. exploitation

ensures that the negative effects of learning will be kept to a

minimum. Therefore, we need to evaluate the performance of

the different CE algorithms, to determine the optimal CE for

various operating scenarios.

The goal of this paper is to investigate and apply some

performance evaluation metrics to estimate the amount of

knowledge that is obtained by the CE algorithm during an

exploration vs. exploitation balancing technique, to utilize

these techniques based on their capabilities in appropriate

conditions.

B. Training overview

Training is used in many AI based systems. For example, a

learning-tree-based classifier is typically trained using a spe-

cific training set, with a goal of minimizing the classification

error. In a back-propagation ANN, the least mean squares

(LMS) algorithm is widely used to minimize the training error.

In κ-means, clustering is used to identify κ groups in a set of

data that minimize the sum of the squares of the distances

of each data point to its assigned group. The examples cited

are batch techniques, i.e., the whole dataset is available before

training commences. On the other hand, online versions are

present that can process data as the data arrive.

Three primary types of learning, reinforcement, supervised,

and unsupervised learning, are used in the context of a CE.

Because various types of learning can be applied in the

context of a CE, we refer to the different learning types

more generically as training to keep the discussion general.

First, in a CE, the training task is assumed to be online

and a joint learning and optimization process takes place.

This operation can be cast as a reinforcement learning task,

which attempts to learn so that a reward is maximized. In

reinforcement learning, the behavior is adjusted as rewards are

received. Second, supervised learning is based on examples

of the desired behavior or attributes being learned. Supervised

learning exists in the context of a CE when the capabilities

of the system are learned by observing action-outcome pairs.

Both reinforcement and supervised learning exist in the context

of a CE: reinforcement learning is used to decide, based on

previous experience, upon the next communications method to

be used; supervised learning is used when the action-outcome

pairs are used to estimate system abilities. One example is

the training of a Bayesian classifier, in which “action” is the

communication method that was used to establish the com-

munications link and the “result” is the number of successful

and failed packets using this method. Finally, in unsupervised

learning, no explicit groupings are specified in the collected

data. The unsupervised learner extracts features from the data,

such as clusters of similar items. Unsupervised learning can

be used for data organization and memory compression; this

type of learning is omitted from our study.

C. Problem Description and Formulation

The general problem in a link adaptation CE is that there is

a list with a large number of possible communication methods

that can be used. Each potential method is a discrete combi-

nation of modulation, coding, antenna techniques, and other

possible parameters defining the communication method to be

used. In this list, some of the methods are eligible and the rests

are ineligible. An eligible method is a method that meets mini-

mum performance requirements of the operation objective, and

an ineligible method fails to meet those requirements given the

current environment. The minimum performance requirements

are typically a given PSR or bit rate (bits/s/Hz). Also it can

be some minimum objective level such as throughput, power

consumption, etc., For example, if a method has a 90% PSR

in the current environment but the minimum required PSR

is 95%, then this method will be ineligible. The goal in a

link adaptation CE is to find the eligible method with the

highest performance metric. In most cases, such as when

the goal is to maximize bandwidth efficiency, the maximum

potential performance of each configuration is already known.

Therefore, the list of configurations can be potentially sorted

by how well each item serves the current goal as apriori

knowledge. In this case, the problem becomes a search through

a sorted list.
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Rather than finding the perfect technique for minimizing

the learning cost (which we have done in previous publications

[8], [9], [5] by adopting an optimal exploration vs. exploitation

balancing strategy), the objective of this paper is to estimate

the knowledge of each CE algorithm during operation. In our

derivation, the estimation of the amount of knowledge that

is obtained by a learning algorithm in its memory is only

indirectly dependent on the performance metric. For this task

to be analytically tractable, some assumptions must be made.

We assume that our radio has K communication methods. For

each method k, we have a potential reward Rk. Each method

is assumed to be evaluated until its eligibility or ineligibility is

verified. Also, for each method k, we have a belief state πk(n)
which represents our knowledge about the underlying reward

distribution at a time step n. π(n) is a vector of all K belief

states at time step n: π(n) = [π1(n), π2(n), ..., πk(n)]
T . The

belief state is (µk(n), σ
2
k(n), n

′) the estimates of the mean

µk and the standard deviation σk, using n′ samples, of the

underlying reward process.

The reward in our problem depends on the objective. It can

be throughput when our objective is maximizing throughput,

or it can be power consumption, or spectral efficiency. If we

use method k, at a time step n, we receive a reward Rk(n).
Therefore, the belief about the reward distribution changes

from π(n) to π(n+ 1). The goal of CE is to select a method

that will maximize the expected reward.

In the rest of this section, we present three different CE

algorithms. The algorithms are ǫ-greedy strategy [10], softmax

strategy based on the Boltzmann exploration [10], and the Git-

tins index strategy [11]. All the techniques have two things in

common. First, all of them are based on stochastic principles.

Second, they all have a factor that affects the exploration rate.

D. The ǫ-Greedy Strategy

The greedy algorithm [10] is the simplest and famous

algorithm in this topic. The idea of greedy is choosing the best

method (with highest reward) with the probability of 1 − ǫ.
And choosing a random method with probability of ǫ. The

ǫ amount is called exploration rate that means the CE will

do exploration with the fixed rate through all the times in

this algorithm. There is another version of ǫ-greedy algorithm

called annealing ǫ-greedy. In this strategy the amount of ǫ
will decrease in each iteration to reduce the probability of

randomness as we collect more information. The idea of an-

nealing algorithms comes from this that at the beginning, since

we don’t have any information about communication methods,

we need to do more exploration, however, by collecting more

information, we need to decrease this rate. The exploration

parameter ǫ is updated at every time step n by:

ǫ =
ǫ0

1 + ndǫ
(1)

where ǫ0 is the initial value of ǫ, and dǫ is the decrease rate.

E. Softmax strategy (Boltzmann Exploration)

Softmax algorithm is a kind of probabilistic strategy that

works based on the idea of as we do more experiments the

probability of choosing each method should be match with

their rewards. In the reinforcement learning area, a softmax

function can be used to do the conversion of rewards into

action probabilities [10]. The function commonly used is:

Pk =
eµk

(n)/T

∑
i e

µ
i
(n)/T

(2)

where T is a positive parameter called the temperature. When

the value of temperature is high (T → ∞), the algorithm

chooses all possible actions with the almost same probability.

However, in the low-temperature value, the algorithm is highly

probable to choose the method with the highest expected

reward. Therefore, when (T → 0), the probability of the

method with highest rewards to be chosen tends to 1.

The temperature T is updated at each time step n by:

T =
T0

1 + ndT
(3)

where T0 is the initial value of temperature, and dT is the

decrease rate.

F. The Gittins Index Strategy

Gittins and Jones [12] proved that our K-dimensional

problem can be reduced to K one-dimensional problems by

using a dynamic allocation index based strategy. Specifically,

the optimal strategy that maximizes our rewards through time

is simply selecting the method k that has the highest index νk
at each time [11]:

νk(π0) = sup
N>0

E{
N−1∑

n=0
γnRk(n)|πk(1) = π0}

N−1∑

n=0
γn|πk(1) = π0}

(4)

which is the expected total discounted reward normalized by

the expected total discount time up to the stopping time N .

The stopping time N may be different for each method k and

depends on the initial belief state π0. For example, after a

few trials using a promising method k, the newly acquired

knowledge may suggest that it is not worthwhile to continue

using method k and the process needs to stop. This ratio is

taken over all possible stopping times N and νk(π0) is the

maximum value. The optimal strategy is simply to use the

option k with the highest νk. This method has been proven to

be optimal by Gittins [12] [11] and others [13]. We discuss

the use of gittins indices in more detail in two of our prior

publications [8], [9].

The Gittins index is dependent upon the underlying distri-

bution of Rk. In this work, we consider the Gittins index for

the Normal Reward Process (NRP). In our application, if a

transmitted packet is successfully received, then we assume

a return equal to the rate of the communication option used,

otherwise the return is zero. For an NRP, the Gittins index is

equal to:

ν(µ, σ2, n′, γ) ≡ µ+ σν(0, 1, n′, γ) (5)

where ν(0, 1, n′, γ) is the Gittins index for a zero mean, unit

variance distributed process and γ ∈ (0, 1) is a discount

3

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

11



factor. Although easier than solving the original problem,

calculating the Gittins indices is still not a trivial task. For

the interested reader [14] provides a concise description of

the method for calculating these indices. However, for most

practical purposes, the indices tabulated in [11] are sufficient,

and thus we use a table-lookup approach.

III. COGNITIVE RADIO ENGINE EVALUATION

One of the most crucial tasks in creating new CE algo-

rithm is evaluating the CE performance in different operating

scenarios. The effect of changing environment, objectives,

learning techniques, and radio capabilities implies that making

an evaluation method for CE algorithms is nontrivial. The first

challenge is to find a way for monitoring the performance

of individual CE techniques. In fact, every CR device is

designed with various functionalities and expectations. Based

on the definition of a CE, different CEs should be able to

sense their own environment and autonomously adapt to the

changing operational conditions. However, various CE designs

provide distinct levels of situation awareness and cognitive

functionality. Such diverse expectations make performance

evaluation a great challenge [15]. To this end, drawing learning

curves of CE techniques could be helpful. A learning curve is a

graphic representation of the relationship between learning and

outcomes. A learning curve can be characterized by the mean,

variance and other statistical metrics of the CE performance.

The learning curves can be very useful for comparing the be-

havior and expected performance of the various CE algorithms.

The main idea of a learning curve is that it shows “The more

you experiment, the better your outcomes will be, through

learning” [16].

All of the proposed learning curves in our previous work

[5], which are used for the evaluation of individual CE

performances are based on the objective function of CE.

For instance, if CE’s objective is maximizing throughput,

the learning curve will be created based on the estimated

mean and variance of received throughput for each decision.

The problem is that if we have another CE algorithm which

operates with another objective such as power efficiency, we

cannot compare the created learning curve for power efficiency

with the learning curve of maximizing throughput. Hence,

we need to define some metrics at a level of abstraction

that is not depend on objective function and implementation

details of CE algorithms. If we can have such unitless metrics,

we will be able to compare the learning capabilities of two

different CE algorithms with two distinct objective functions

and implementation details.

A. Quantifying the Amount of Knowledge

In this paper, we present three different metrics to estimate

the experience level of CEs. First, as we defined in previous

section, we classify all available communication methods into

two distinct classes, eligible and ineligible. The goal of a link

adaptation CE is to find the eligible method with the highest

performance metric. We use the belief state of each method k
to estimate the upper bound and lower bound of the obtained

rewards. To calculate the confidence intervals of a random

process for unknown mean and standard deviation, we use t
distribution as follows [17]:

Rlk(n) = µk(n)− (t(
1− C

2
, n′ − 1) ∗ σ√

n′
) (6)

Ruk(n) = µk(n) + (t(
1− C

2
, n′ − 1) ∗ σ√

n′
) (7)

where µk(n) is the sample mean of obtained reward at time

step n, σ is the sample standard deviation of the rewards,

C is the confidence, n′ is the number of trials that we tried

method k, t is the upper (1 − C)/2 critical value for the t
distribution with n′− 1 degrees of freedom, and Rlk and Ruk

are the lower and upper bounds for the underlying reward

distribution’s mean of method k at time step n respectively.

To classify the communication methods we use following

statement:

Ruk(n) < argmax
j∈[1,K]

µj(n) (8)

means each communication method that has an upper bound

smaller than the best obtained rewards mean is not eligible

for next decision step. CE considers the statement 8 for

all communication methods at each step to determine their

eligibility. After labeling all methods, the CE will just consider

the eligible methods as its option for next decision. By the

definition of the classes, we can say at each time step the

number of eligible and ineligible methods are:

NK = NE +NI (9)

where NK is the number of all methods and NE , NI are the

number of eligible and ineligible methods respectively.

The statement 9 is correct in all time steps. Therefore, one of

the potential metrics to evaluate the learning algorithm could

be the number of eligible methods. Generally, the fraction

of eligible methods to the number of all available methods

could tell us that how much the CE is close to find the best

method. This metric is completely independent of the objective

function and implementation details of CE algorithm, and we

can represent it as a first index:

I1(n) =
NK −NE(n)

NK − 1
(10)

where n represents the time step. If the (I1 → 0) means

all the methods are eligible, therefore, the CE does not have

any confidence for choosing the best method, however, if the

(I1 → 1) means we have just one eligible method, so the

CE is highly confident about the best method. Moreover, by

evaluating the amount of this index, we can say how much of

the journey to find the best method has already paced.

Since I1 shows the real picture from the learning journey,

we call it left-brain index (LBI). We chose this name because

in humans, the left brain considers the analytically and logical

side that provides a more realistic image of a phenomenon.

Although this index can give us some useful information

about the progress of CE algorithm, it doesn’t have any

knowledge about the received rewards from methods that CE

has tested until now. For instance, we cannot distinguish be-

tween a CE which considers the low potential communication

methods with the CE which is working with high-potential
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ones. Furthermore, if a CE has many methods with almost

same rewards, the LBI index shows less progress to be close

to the goal. Hence, we need another index, which will be able

to give us information about the received rewards. To end, we

define:

I2(n) =
argmaxj∈[1,K] µj(n)

argmaxj∈[1,K] Ruj(n)
(11)

The I2 reflects the amount of CE’s progress to find the

highest reward. When (I2 → 0) means CE does not have much

information, and it is far from the maximum potential rewards.

Conversely, when (I2 → 1) means the CE is completely

sure about the best method, and its obtained reward is close

to its imagination about the maximum potential reward. In

contrast with I1, the I2 is highly related to the reward’s value,

not the number of processed methods. For instance, if all

the available methods are eligible, and they have very close

rewards’ value, this index will show us a high value close to

1, however, the first index will show a low value that reflects

less knowledge. Moreover, The I2 gives an information about

how far CE is from its imaginary possibilities by maximum

potential rewards. Since I2 considers CE imagination and the

human right brain also operates our imagination, daydreaming,

and emotions, we call this index the right-brain index (RBI).

Finally, we present another index, which is the combination

of two proposed indices. The new index is:

I3(n) = 1−

NE∑

i=1

(Rui(n)− argmaxj∈[1,K] µj(n))

NK∑

j=1

(Rui(0)−Rli(0))

(12)

where the nominator is the summation of distance between

upper bounds of eligible methods with the mean of best-known

method at time step n. The denominator is the summation of

upper bounds to lower bounds at the start point for all methods.

The I3 illustrates the amount of knowledge by considering

the eligible methods and their obtained rewards. Since this

index can reflect both aspects of training phase and makes a

connection between the aforementioned indices, we call it the

corpus callosum index (CCI). The corpus callosum is the brain

structure links the two sides of the human brain together.

B. Experimental Results

To demonstrate the benefits of new proposed indices in

evaluation of CE performances, we present a simple example.

In this instance, we assume a 4 by 4 MIMO system with

QPSK, 8PSK, 16, 32, 64, 128 and 256 QAM as a modulation

type with eight error correction rates: 1, 7
8 , 3

4 , 2
3 , 1

2 , 1
4 , 1

6 and 1
8

and antenna techniques: VBLAST, STBC and MRC. For our

channel scenarios, we consider an SNR in the range of 0-50

dB and the log10 of the eigen spread (κ) of the channel matrix

in the range of 0-12. The CR also has 12 channels available

with different SNR and bandwidth (either 1.25 or 2.5 MHz).

Figure 1 illustrates the results of four different CE algo-

rithms. The plot is created by the averaging of 1000 distinct

trials over 1000 time steps on the same channel scenario for

all CEs. The first CE is the ǫ-greedy strategy with the constant
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Fig. 2. Cognitive Engine algorithm’s learning Indices

ǫ equals to 0.1. Since this strategy will choose the best-

known method by the probability of 0.9, it has a conservative

approach. Therefore, The CE stays with a method as soon as

receiving a minimum acceptable reward. The second CE is

based on the Gittins index strategy with the discount factor

of 0.9. In contrast with the previous CE, this CE follows its

own indices and in almost 370 time steps does not have any

rewards. Nevertheless, after 450 time steps, it converges to the

highest potential rewards very fast. The behavior of Gittins

CE is much more aggressive than the greedy CE. Third CE is

annealing ǫ-greedy with the initial ǫ equals to 0.7, and at each

time step decreases by 0.001. Since this CE has the higher

exploration rate at the start, in comparison with the first CE

with constant ǫ, it will find the better communication method

after a while. Therefore, the annealing ǫ-greedy strategy is

more aggressive at the start; however, as it goes, it becomes

more conservative. Fourth CE is based on the Boltzmann

exploration strategy which is a probabilistic technique. At the

start, CE has been decreasing rewards, since the CE initialized

by the maximum potential rewards. Hence, the probability of
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Fig. 3. Three Contextual exploration Cognitive Engine algorithms

finding the best method decrease until translating the most

of apriori knowledge to real obtained reward in the current

channel scenario.

In Figure 2, we can see the corresponded learning indices

to each of the pointed out CE algorithms. All of the indices

are unitless and completely independent of the implementation

details and operating scenarios. The plots depict that the

RBI behaves more aggressively for Gittins and Boltzmann

strategies because they have an aggressive approach. This

happens because they will be close to the imagination of

maximum potential rewards after doing more exploration.

Conversely, since more conservative algorithms such as ǫ-
greedy with constant ǫ do not explore many times the RBI

line is monotone, however, the LBI line shows lots of progress

at the start point. The interesting point of CCI is the ability

of prediction which it shows for various CEs. For instance,

although the Gittins and Boltzmann do not have a good output

at the first 400 steps, the CCI shows a very good learning

progress. This predicts a jump after a while as we can see

that happens for both cases.

There are several applications to utilize the new proposed

indices. For instance, we can use them for prediction of

the CE’s performance. Furthermore, they can be used for

comparison and analysis the performance of CE algorithms.

Moreover, we can control the exploration rate of the CE

algorithms based on the obtained information from the indices.

To end, Figure 3 depicts the learning curves of three different

contextual CE algorithms based on the ǫ-greedy strategy. Each

CE uses one of the proposed indices to control the amount of ǫ
as an exploration rate. Since the RBI insists on the maximum

potential output based on the maximum upper bound, RBI-

based CE explores more to reach its goal. However, the LBI-

based CE keeps its obtained reward by doing some exploration

based on the number of eligible methods that need to be

investigated.

Figure 4 shows the indices of three new contextual CE

algorithms. For each aforementioned contextual CEs, we plot

the same indices. For instance, the LBI index of LBI-based

CE, demonstrates more value than the same index for ǫ-greedy
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Fig. 4. The Indices of Contextual Cognitive Engine algorithms

algorithms. Therefore, the LBI-based CE provides better out-

come during same time steps. The other parts of Figure 4

illustrate the tree defined indices for the new contextual CEs

that are created.

C. Future Work

Quantifying the knowledge/experience level of a CE is an

important task because knowing the experience level will make

a CE more dependable and predictable. These qualities will

make a CE more desirable since system designers will be more

comfortable to include them as a part of their system since

they will know what to expect at a given time. Furthermore,

it will enable the development of meta-CEs that combine the

strengths of multiple CEs. That said, we plan to continue refin-

ing the metrics we presented in this paper and developing new

metrics that potentially better quantify the experience level

of the CE and/or are more useful in a practical application.

Finally, we plan on further investigating the development of

exploration methods that use the experience metrics of the

CE.

IV. CONCLUSIONS

In this work, we proposed three evaluation metrics that

quantify the experience level of cognitive engine (CE) algo-

rithms. A metric that is based on the number of unexplored

configuration options (LBI), a metric that is based on the

possible rewards of the remaining unexplored configuration

options (RBI), and a metric, which combines elements of the

last two (CCI).

It was demonstrated by applying the metrics on four CE al-

gorithms that most of the time the LBI and RBI metrics present

a different perspective from each other and that the CCI metric

provides a more balanced perspective compared to the other

two. Especially the CCI metric can capture the progress made
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when using the Gittins Index CE algorithm during the initial

exploration phase which appears as if no progress was made

if one was looking at the achieved performance and the LBI

and RBI metrics.

Finally, we found that the metrics can be used as the basis of

contextual exploration algorithms with promising results. We

plan to continue development of both evaluation metrics and

exploration methods that are based on the evaluation metrics.
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